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It is well documented that nominally identical 
specimens of  brittle materials, e.g. ceramics, show 
a large variation of  tensile fracture stresses and in 
order to use brittle materials as engineering 
materials the strength has to be characterized. The 
most widely used expression for characterization 
is the cumulative distribution function proposed 
by Weibull [ 1 ]. The Weibull function is also known 
to statisticians as Fisher-Tipper Type Ill distri- 
bution of  smallest values or as the third asymptotic 
distribution of smallest extreme value [2]. The 
Weibull statistics is based on the the "weakest 
link-hypothesis" which means that the most 
serious flaw in the specimen will control the 
strength. The most serious flaw is not necessarily 
the largest one because its severity also depends on 
where it is situated. In other words, the flaw which 
is subjected to the highest stress intensity factor 
will be strength controlling. The flaws initiating 
fracture can conveniently be classified as intrinsic 
or extrinsic [3]. The intrinsic flaws are introduced 
during fabrication and are predominantly inclusions 
and voids. The extrinsic flaws are stress-induced 
cracks, such as surface cracks introduced during 
machining and microcracks resulting from large 
residual stresses, e.g. due to thermal contraction 
anisotropy. 

From an engineering point of view the strength 
variability of  brittle materials requires a new 
design approach [4] and the following must be 
considered. 

1. The aim of  total safety of a component 
must be relaxed and a definite acceptable failure 
probability must be specified. 

2. Due to the statistical variation of flaw-sizes 
the failure probability will increase with increasing 
component volume. 

3. As discussed above, tire failure of  a complex 
component is not necessarily initiated at the point 
of the highest nominal stress. 

In order to predict the reliability of a structure 
both the stress and strength distribution functions, 

which might be time dependent, have to be known 
[2]. The time dependence of strength can for 
instance at elevated temperatures be caused by 
creep crack growth, cavitation and pit formation 
[5]. Even time independent strength distributions 
can be complex due to multiple flaw populations 
in the same specimen [6]. 

In order to characterize the strength of  a 
ceramic material, bend tests are usually performed 
and a distribution of strength values is obtained. 
For small sample sizes ~ 50 specimens the classical 
problem is how to relate the fraction of specimens 
failing below a given stress to Weibull's cumulative 
distribution function. Many different relations 
have been proposed to define the cumulative 
failure probability and the object of this paper 
is therefore to study the effects of some, more 
or less, common estimators upon the Weibull 
parameters for different sample sizes. A single 
flaw population and a time independent strength 
will be assumed. 

The Weibull distribution is given by 

P = 1 - e x p  - V  (1) 
\ Oo / 

where P is the fracture probability for the stress o, 
m is known as the Weibull modulus, V is the 
volume of the specimen, Oo is a scaling parameter 
and o u is a threshold stress below which the failure 
probability is zero. In this equation it is assumed 
that compressive stresses do not contribute to 
fracture. Furthermore, it is also assumed that the 
failure initiating flaws are volume distributed and 
that the tensile stress is constant in the voulme. 
The problem with a nonuniformly stressed body 
is, however, simply solved by replacing the "risk 
of rupture", V[(o-ou) /Oo]  rn, with a volume 
integral. The expression for failure initiating 
surface flaws is obtained by replacing volume with 
area. 

The mean strength of the distribution (i.e. 
Equation 1) is given by 
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6 = o u + aoP(1 + 1/m) 
V 1/m 

where P is the gamma function. 
The distribution can now be written as 

(2) 

-} 
(3) 

It is often quoted that the mean strengths of  two 
components, 1 and 2, with different volumes are 
related as 

(4) 1"77-.. 

This relation is directly a consequence of Equation 
2. However, as discussed by Batdorf [7] the weak- 
est link theory does not actually permit us to draw 
this conclusion. The weakest link theory just tells 
that the risk of  rupture will be directly related to 
the volume. However, it there is only one single 
flaw (strength) population in the specimen, then 
Equation 4 is valid. 

The three-parameter function (i.e. Equation 1) 
can be used when the material can be guaranteed 
to have a minimum strength, for example obtained 
by proof testing in an inert atmosphere. But due 
to the danger in underestimating the safety factor 
it is recommended in general to put Ou = 0 for 
brittle materials [8]. The following discussion, 
therefore, is confined to the two-parameter func- 
tion. (Through a simple linear transformation the 
three-parameter function can be obtained from 
the two-parameter function [2] and the results 
later obtained do not lose anything in generality.) 

By rearrangement and putting o u = 0 Equation 
3 can be written as 

y = In In 

A plot o f y  aginst lno  will evidently give a line of 
slope m. The slope can therefore be estimated 
graphically or for example by the  least squares 
method or the maximum likelihood method. The 
results from any of  these methods will give a 
biased estimate of  m (e.g. [2 and 8]). The maxi- 
mum likelihood method gives a m estimate, which 
is biased but is independent of  the plotting 
procedure used. However, there are no obvious 
statistic arguments for choosing this method 

instead of  the less expensive least squares method, 
at least for small sample sizes [8]. Therefore, the 
interest willbe directed towards the latter method, 
in spite of  the problems associated with the choice 
of  an estimator for P. However, it must be realized 
that in using the least squares method it is assumed 
that the experimentally obtained In a values are 
Gaussian distributed around the "true" line given 
by Equation 5. It is probably more reasonable to 
assume that the experimentally obtained o values 
are Gaussian distributed. This approach however, 
requires a direct nonlinear least squares curve fit 
and is a subject for future work. 

Let us choose a sample size of  n specimens and 
order the strength values so that 

o i  <~ a 2  <~ . . . a j  . . . . .  < o n  

The following two estimators have been used 
by Yrustrum and Jayatilaka [8] to calculate Pi for 
the ]'th strength 

j 

PJ n + 1 (6) 

i--0.5 ~'j - (v) 
gt 

The contender in Equation 6 is known as the mean 
rank value [2] and that in Equation 7 is the 
average value of the empirical density function 
before and after the jump at oj [8]. As demon- 
strated by [8] for sample sizes less than 50 speci- 
mens Equation 6 gives a more biased m estimate 
than Equation 7 and with approximately identical 
variances. The latter estimator is therefore to be 
preferred, a conclusion also drawn by Johnson [6]. 

Among other estimators discussed by [2] we 
have the median rank value which can be approxi- 
mated by 

j -  0 .3  

PJ n + 0 . 4  

A further example is 

/ - 3 / 8  

P~ - n + 1 / 4  

(8) 

(9) 

As cited by [2], White, who studied samples of  
size 6, found that Equation 9 gave the least-biased 
m estimate and that the most biased estimate 
resulted from Equation 6, while Equations 8 and 
7 gave approximately equivalent m estimates. 

These four contenders will now be compared 
for different sample sizes not greater than 50 
specimens, because larger sample sizes are not 
often used in practice. 
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The statistical properties of the four estimators 
have been studied by a Monte Carlo simulation 
technique as described by Trustrum and Jayatilaka 
[8]. This procedure will now be shortly discuased. 
Let us start with rewriting Equation 5 as 

o = In (10) 

where for sake of  clarity 6 has been put  equal to 
I '(1 + 1/m). If  we regard a large "specimen" 
population with a prescribed m value, it is seen 
that random strength values can be obtained from 
Equation 10 provided random number between 
0 and 1 are substituted for the fracture prob- 
ability, P. A computer  program was written, which 
used a sample of  random numbers to obtain 
strength values o l ,  o 2 . . .  On for a given m value. 
The strength values were then ranked in ascending 
order. This was followed by a least squares analysis 
of  the linear equation given in Equation 5 and the 
obtained specific m i value of  this sample was 
stored. The procedure was repeated for each of the 
four estimators between 2000 and 4000 times 
depending on the sample size. The generated 
random samples were of size n = 10, 20, 30, 40 
and 50. The random strengths were generated 
from a distribution with m = 10. As has been 
shown by Bain and Antle [9] only one value of  m 
needs to be considered for each estimator to 
obtain the bias and standard deviation of the 
"exper imental ly"  determined m value. The mean 
value of rn, r~, and the standard deviation of m, 
Sin, are obtained from 

k 
r~ = ~ rn__/ (11) 

i=J k 

and 
(mi 

s:~ = )_2 (12) 
z'=j k - - 1  

where k is the number of samples and m i is the 

rn value of sample i. In Table I the results of the 

Monte Carlo simulation for the different esti- 
mators are given. The listed values are N/m and 
Sm/N in parenthesis. For  an unbiased m value 
N/rn is expected to be c lose to  unity. 

By using the law of propagation of errors it has 
been shown that the coefficient of  variation of  m, 

i.e. the standard deviation of m divided by its 
mean value should be equal to 1/n 1/2 [9]. In the 
last column of  the table 1/n 1/2 is given for the 
different sample sizes and as is seen this gives a 
good description of  the statistically obtained 
Sm/t~ values. It should be noted that these figures 
as expected are larger than those given by the 
Cramer -Rao  lower bound for unbiased estimates, 
which is 0.78/n 1/2 [8]. 

From Table I it can be seen that the popular 
Pi =j/(n + 1) gives the largest bias and that ffz/rn 
increases with increasing sample size. It is also seen 
that the other estimators give a much smaller bias 
and that ff~/m in most cases show just a little 
deviation from the true value of  one. The standard 
deviation of m for the different estimators is 
approximately equal and it is as expected decreas- 
ing with increasing sample size. 

The results of the two first estimators are close 
to the results given by [8]. 

Though not shown in this paper it was found 
that the mean value of  6/F(l  + l /m)  in Equation 
5 was close to one and that its coefficient of  
variation was less than 2%. It must be pointed out 
that the latter result was an effect of  the chosen 
m value of  10. As it has already been shown [9], by 

using the law of propagation of  errors, this coef- 
ficient of variation decreases with increasing 
sample size and m value. 

One of  the problems of performing an exper- 
iment in oreder to characterize the strength of  a 
brittle material is to determine the number of 
specimens needed to get a good statistical repro- 
ducibility. The performed Monte Carlo simulation 
has shown that there is little if any difference in 
the coefficient of variation of  m between the used 

T A B L E I Estimated means and standard deviations of m for four different estimators and different sample sizes. The 
last column shows the theoretical coefficient of variation of m 

n Pj =j/(n + 1) Pj = ( j -  0.5)/n Pj = ( ] -  0.3)/(n + 0.4) Pj = Q ' -  3.8)/(n + 1/4) 1/n 1/2 

fft/m (Sm/fn) ff~/m (Sin~fit) fft/m (Sin~fit) r=n/m (Sm/rn) 

10 0.869 (0.333) 1.062 (0.330) 0.978 (0.328) 1.010 (0.332) (0.316) 
20 0.890 (0.240) 1 .011 (0.230) 0.963 (0.226) 0.986 (0.228) (0.224) 
30 0.908 (0.189) 1.006 (0.186) 0.961 (0.185) 0.977 (0.187) (0.183) 
40 0.918 (0.167) 1.002 (0.166) 0.969 (0.164) 0.977 (0.162) (0.158) 
50 0.927 (0.149) 0.998 (0.143) 0.965 (0.148) 0.978 (0.144) (0.141) 
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T A B L E I I Experimentally obtained and corrected m values for silicon nittide tested in three point bending 

P i =]/(n + 1) Pj = q -- 0.5)/n Pj = (/-- 0.3)/(n + 0.4) P] = (j -- 3(8)/(n + 1/4) 

m 11.01 12.61 11.87 12.12 
corrected m 12.37 12.47 12.32 12.29 

estimators and that it can be obtained from 1/n v2. 

It is also shown that Pj = ( j - 0 . 5 ) / n  gives the 
least biased m estimate provided n~> 20. For 
smaller populations the fourth estimator is to be 
preferred. However, as can be seen the bias is 
always much less than the coefficient of  variation. 

In order to see the effects of  the different 
estimators some of  the experimental results of  
Katayama and Hattari [10] are used. The studied 
material was sintered silicon nitride and the 
tabulated strength values of  20 specimens tested 
in three point bending have here been used for the 
analysis. The m values obtained for the different 
estimators are given in Table II. The exper- 
imentally obtained m value will most probably 
correspond to the statistically evaluated mean 
value given in Table I. A corrected value, which 
is expected to be close to the true value, is 
obtained by dividing the experimental value by 
the ffz/rn value of  Table I. As can be seen the 
expected m value is about 12.4. The standard 
deviation is expected to be 12.4/201/2 ~ 2.8 
according to the last column of  Table I. Though 
not shown in Table II the ratio 6/1"(1 + 1/m) 
evaluated from the data as expected was not 
significantly different for the four estimators and 
this means that the predicted failure probability 
at low stresses is largest for P j = j / ( n  + 1) and 
smallest for Pi = (1"--0.5)/n. The first expression 
evidently gives a conservative failure probability 
and should therefore, from an engineering point 

of  view, be the best choice in reliability predic- 
tions. However, from a materials science point of  
view, the second one is to be preferred. 
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